the conceptual and technical foundations for further developing HA formulations for the topical treatment of cutaneous malignant melanoma.

Acknowledgements

We thank Neema Lakshman for her assistance with confocal microscopy and Marguerite Starr for her secretarial assistance. This work was supported by NIH grants RO1 AR48840 (MEM) and R24 EYO16664 (WMP).

References


Letter to the Editor

Comparison of keratin expression in cultured human adenocarcinoma cell lines

Keywords:
Keratin; 2D-PAGE; Cultured adenocarcinoma cells; Cell mobility

Adenocarcinoma is a cancer arising from various glandular tissues, possibly derived from epithelial cells of the breast, colon, lung, prostate, stomach, pancreas, cervix, or vagina. As implied by its developmental origins, epithelial tissues – keratins (Ks) – might be expressed in the adenocarcinoma or cultured cell lines. Although some K subunits might also be expressed in cultured adenocarcinoma cell lines, few reports have described K expression data [1].

The adenocarcinoma cell lines used for this study were derived as follows: RERF-LC-OK from the lung, HEC-1 [2] from the uterus, and SW-13 [3] from the adrenal cortex. The Health Science Research Resources Bank, Osaka, Japan, supplied these cell lines and SF-TY (human fibroblast cell line). Additionally, HaCaT, which was gifted by Dr. NE Fusenig was analyzed as normal keratinocyte cells [4].

The Ks were prepared from cultured cells using a particular medium. For the K preparation prepared from each cell line, we used an aqueous solution (10 mM Tris–HCl (pH 7.4)/10 mM EDTA/1 mM PMSF) [5], rather than the high-salt solution which had been used in earlier studies of cultured cells. The former solution proved to be useful for the effective extraction of keratin peptides in cultured cells [6]. The extracts were subjected to 2D-PAGE to identify the Ks present in the cultured cells of three kinds. As presented in Fig. 1, the Ks in RERF-LC-OK comprised K6, K8, K10, K14, K16, K17, K18, together with vimentin. In HEC-1, expressed Ks were almost identical to those of RERF-LC-OK, except for K19 (Fig. 1). On the other hand, a slightly different expression of Ks was detected in SW-13—only K7, K8, K16, and K17 were expressed (Fig. 1C). Neither K13 nor K19, so-called tumorigenic K markers, was expressed, as evidenced by the different expression patterns from those of the other two adenocarcinoma cell lines. The periodic acid Schiff staining results showed no keratins detected in three cultured adenocarcinoma cell lines and HaCaT cells (data not shown)—these data agree with our previously reported data of cultured squamous-cell carcinoma, malignant melanoma, and angiosarcoma cells [5].

Almost all anti-K monoclonal antibodies used for this study reacted well to Ks, as estimated from the results of 2D-PAGE in the three cultured adenocarcinoma cell lines described above. From numerous Western blotting data, a fine distinction of K expression was confirmed as presented in Fig. 1D. Particularly, K19 expression was found only in the HEC-1 cell line; a difference of K8/K18 expression was also confirmed. Consequently, K8/K18 expression was less in SW-13 and more in RERF-LC-OK. Vimentin expression respectively showed a definite level in the three cultured cell lines. These results were repeated several times and yielded good reappearance. The expressed Ks are presented in Table 1 along with the data of 2D-PAGE and Western blotting. In addition, four expressed K subunits – K8, K18, K13, and K19 – and actin/vimentin were extracted and then investigated in detail in relation to K and cell mobility. Although K8/K18, K13, and K19 have been reported as tumorigenic K markers [7,8], the SW-13 cell line showed a striking difference from other cell lines among the same adenocarcinoma cells. Furthermore, K19 overexpression decreases the invasion potential by diminishing their migrating capability in oral SCC [9]. Conversely, it is true that overexpression of K19 in hepatocellular carcinoma cells is related to metastatic behavior [10]—the relation of K expression and malignancy in tumor cells is insufficient to establish universal concepts. The data shown in Table 1 are useful for additional determination of the presence or absence of K expression. Based on the four Ks described above, the degree of malignancy in adenocarcinoma cells of three kinds was estimated temporarily as follows: HEC-1 > RERF-LC-OK > SW-13.

Experimental procedures of cell migration were performed according to the manufacturer’s protocols. Each prepared cell
Fig. 1. 2D-PAGE and Western blot analyses of extracts prepared from cultured human adenocarcinoma cell lines of three kinds: RERF-LC-OK, HEC-1, and SW-13. Numbers were estimated as K subunits. Standard proteins in 2D-PAGE: (A) rabbit α-actin (pI 5.4, Mr 42 kDa) and (B) bovine serum albumin (pI 6.35, Mr 68 kDa); (P) 3′-phosphoglyceric phosphokinase (pI 7.4, Mr 43 kDa). Separation of proteins in the first dimension was by nonequilibrium pH gradient gel electrophoresis (I) and in the second dimension by 12.5% polyacrylamide gels containing sodium dodecyl sulfate (II). (D) Western blot analyses were conducted using several K-monoclonal antibodies: 5D3, K8/K18; Ks. 19.1, k19; DE-K13, K13; Ks.17E3, k17; LL020, K6; V9, vimentin; and ACTN05, actin. M, molecular marker. (1) HaCaT, (2) RERF-LC-OK, (3) HEC-1, (4) SW-13, and (5) SF-TY.

Table 1
Summary of keratin expressed in three kinds of adenocarcinoma cell lines from the data of 2D-PAGE and Western blotting.

<table>
<thead>
<tr>
<th>Cultured cell</th>
<th>Keratin (K) number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K1</td>
</tr>
<tr>
<td>HaCaT</td>
<td>2D-PAGE</td>
</tr>
<tr>
<td></td>
<td>WB</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>RERF-LC-OK</td>
</tr>
<tr>
<td></td>
<td>WB</td>
</tr>
<tr>
<td>HEC-1</td>
<td>2D-PAGE</td>
</tr>
<tr>
<td></td>
<td>WB</td>
</tr>
<tr>
<td>SW-13</td>
<td>2D-PAGE</td>
</tr>
<tr>
<td></td>
<td>WB</td>
</tr>
</tbody>
</table>

V, vimentin; A, actin; WB, Western blotting; (%) present; (∆) faint; (×) absent; (–) not detected.
The迁移动作活动of three kinds of adenocarcinoma cell lines.

<table>
<thead>
<tr>
<th>(A) NC migrated cell no. (n = 4)</th>
<th>(B) NC invasion (%)</th>
<th>(C) Tested migrated cell no.</th>
<th>(D) Tested cell invasion (%)</th>
<th>(E) Invasion index</th>
</tr>
</thead>
<tbody>
<tr>
<td>RERF-LC-OK 1005</td>
<td>2.01</td>
<td>1226</td>
<td>2.45</td>
<td>1.219</td>
</tr>
<tr>
<td>HEC-1 900</td>
<td>1.8</td>
<td>508</td>
<td>1.02</td>
<td>0.567</td>
</tr>
<tr>
<td>SW-13 515</td>
<td>1.03</td>
<td>917</td>
<td>1.83</td>
<td>1.781</td>
</tr>
<tr>
<td>HaCaT 610</td>
<td>1.219</td>
<td>755</td>
<td>1.51</td>
<td>1.239</td>
</tr>
</tbody>
</table>

NC, negative control; spread cell no. (50,000/well): (A): average no. of four membranes in each control sample; (B): (A)/spread cell no. × 100; (C): average no. of four membranes in each tested sample; (D): (C)/spread cell no. × 100; (E) (D)/(B).


References


Mamiko Yamashita a
Kazuhisa Takahashi a
Michihiko Sato b
Kaoru Otsu c
Toshiya Hirayama a
Yohtaro Katagata a*

aDepartment of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
bCentral Laboratory for Research and Education, Yamagata University School of Medicine, Yamagata, Japan
cEnvironmental Preservation Center, Yamagata University School of Medicine, Yamagata, Japan dDepartment of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan

*Corresponding author. Tel.: +81 172 39 3773; fax: +81 172 39 3773 E-mail address: katagata@cc.hirosaki-u.ac.jp (Y. Katagata)

11 July 2008